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ABSTRACT 

U.S. Law enforcement agencies are authorized and expected to use the minimum 

level of force when maintaining law and order. Few civilian law enforcement agencies 

and no military law enforcement agencies proactively monitor the use of force. 

Furthermore, agencies that do monitor force use methods that produce simplistic data 

summaries. These data summaries provide late and limited information to decision- 

makers regarding conditions sufficient to warrant managerial intervention. This study 

models police force incidents as a Poisson process and monitors the process to detect 

departures from the model. Police force data is charted using a self-starting control chart 

scheme. The charts assist the decision-maker in determining if intervention is necessary 

to correct an out-of-control condition while simultaneously minimizing unnecessary 

intervention when shifts in the frequency of force are plausibly due to random variation. 

Force data from military and civilian law enforcement agencies illustrate the methods. 

Methods are implemented in a Microsoft Excel spreadsheet with Visual Basic macros for 

ease of use. 
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EXECUTIVE SUMMARY 

Police officers are responsible for protecting the public. These officers are 

authorized to use force in the execution of their duties. Properly controlling the use of 

police force is critical. An excessive level or frequency of police force will degrade the 

relationship between the police and the public. To support quality improvement, police 

departments invest a large quantity of time and money training their officers to use the 

appropriate level of force. However, an effective system capable of monitoring police 

force does not exist. 

This research develops a statistically based tool that assists police managers in 

rapidly detecting changes in police force frequency. Control chart schemes, used in 

Statistical Process Control, are developed and improved for the application of monitoring 

the use of force. A self-starting Shewhart style control chart is used to assist police 

managers in detecting transient special causes that change the police force frequency. 

Additionally, a self-starting cumulative sum control chart is implemented to permit 

detection of persistent shifts in police force frequency. These control charts are 

formulated in a Microsoft Excel spreadsheet with Visual Basic macros to support ease of 

use. The result is a software package that assists in quality improvement. 

Data from both a civilian and a military police department are analyzed using the 

methods developed in this research. Force data is modeled as a Poisson process. The 

purpose of this research is to detect departures from this model while minimizing reaction 

to usual variation.  The control charts provide useful information to the decision-maker 

xv 



allowing effective monitoring of police force frequency. The identification of departures 

in police force frequency is important for police force quality control. The rapid detection 

of shifts in force frequency provides the feedback necessary to support learning while 

simultaneously preventing unnecessary interaction by police supervisors when the shift in 

force frequency is due to usual variation. The study concludes that the suggested method 

is an effective quality improvement tool for monitoring police force. 
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I.      INTRODUCTION 

A.     OVERVIEW 

Civilian and military law enforcement organizations are similar in many respects. 

These agencies are comprised of well-trained officers with various levels of supervision. 

In civilian law enforcement, the supervisors are officers who have performed well and 

progressed through the ranks. Accordingly, each senior level supervisor (Chief of Police, 

for instance) is an individual with an extensive background as a law enforcement officer. 

However, in the case of military law enforcement, the senior level of supervision usually 

consists of individuals with little or no law enforcement experience. Although a Security 

Limited Duty Officer (Security LDO) community has been established in the Navy, many 

shore base security officer billets are filled by officers of the Unrestricted Line (URL). 

Even if the security officer is a Security LDO, that officer is directly responsible to a base 

or station commander who is almost always a member of the URL. As a result, senior 

leaders in the military security organization must rely on their own management skills, 

instinct, common sense, and general experience to successfully manage the security 

function. First-hand experience in law enforcement is rarely available. Due to this 

experience gap, senior leaders of the military security organization are at a disadvantage 

when compared to their civilian counterparts. 



B.  BACKGROUND 

The experience gap in the supervision of military law enforcement agencies can 

be problematic. One major liability is the potential for the unchecked use of force (Healy, 

1997). Law enforcement agencies interact with the public on a daily basis. Some 

interactions result in the use of force while others do not. The levels of force (often 

referred to as a 'force ladder' where each level of force indicates the next rung on a 

ladder) are typically defined as (Roush, 1996): 

(1) Officer presence. 

(2) Voice. 

(3) Physical restraint. 

(4) High-impact strike. 

(5) Deadly force. 

The effect of excessive frequency of officer presence and voice is rarely serious.   The 

excessive frequency of deadly force is serious and is typically identified without the need 

of detailed analysis. However, the telltale signs indicating an excessive frequency of 

physical restraint and high impact strike are hard to detect. In order to maintain 

confidence in the law enforcement agency, neither an excessive frequency nor an 

excessive level of force can be tolerated. Some factors that affect the frequency of the use 

of force include the incident type, officer training, officer experience, and level of 

supervision (Kertesz, 1992). Although policies exist to guide the use of force, there is 

variation in how different officers handle different incidents. 

Quickly determining whether or not variation in the frequency of force is due to 

chance is critical to the supervision of a law enforcement agency (both civilian and 



military). Unnecessary and indiscriminate use of force by officers must be detected and 

addressed. Also, unnecessary intervention by supervisors when variation in the use of 

force is due to chance reduces the effect of intervention when action is necessary. Even if 

the law enforcement agency supervisor is steeped in law enforcement experience, he or 

she will have difficulty in separating the usual frequency of force from the unusual. 

C.      PROBLEM DEFINITION 

There is a need for a process that assists both civilian and military .law 

enforcement supervisors in monitoring and regulating force. Police agencies 

acknowledge the fact that there is an increasing incidence of highly publicized cases of 

police force used against citizens, and that technology is not being used to evaluate these 

trends (Moody, 1998). A 1992 business evaluation of "risk management and use of 

force" conducted by Louise Kertesz and- reported in Business Insurance revealed that 

"Managing police liability requires good supportive supervision, excellent management, 

and leadership with vision and values" (Kertesz, 1992). This statement is true. However, 

it fails to address the importance and value of statistical evaluation in the risk 

management of the use of force. A more recent study conducted by Dennis Smith and 

reported in Contemporary Sociology states that "A problem that pervades this or any 

exploration of the topic of police brutality is the absence of meaningful measures of its 

extent, severity, or trends" (Smith, 1996). Most recently, a November 1998 study of the 

use of deadly force by Monterey County law enforcement agencies reveals that none of 



the eight police departments surveyed collects data concerning officer firearm discharges 

(Givens, 1998). 

Although police force data is not typically collected nor analyzed, the use of force 

is recorded by law enforcement agencies in routine police reports. Each police incident 

results in the completion of a police report that states the offense and the police officer's 

actions. As a result, these reports contain detailed information regarding the use of 

weapons, pepper spray, restraints (handcuffs), etc. The crime prevention division of a 

police department reviews these reports and develops a crime database. However, the 

existing information regarding the use of force is not statistically analyzed. 

D.      OBJECTIVE 

The objective of this study is to develop a statistical method for monitoring the 

frequency of police force. This study systematically evaluates police force data and the 

applicability of control chart methods through a series of research questions: 

A. Can existing statistical parametric methods model civilian and military police 

force count data? 

B. Can a. self-starting Shewart control chart be developed to improve existing 

control chart methods? 

C. Can cumulative sum control chart methodologies be applied to monitoring 

police force allowing shifts in force frequency to be detected? 



E.      SCOPE AND LIMITATIONS 

There is no nationwide standard for tracking and monitoring police related 

statistics and this study does not intend to establish such a standard. Furthermore, force 

level definitions vary from department to department. The use of handcuffs provides one 

example revealing the difference in force definition. Many departments consider the use 

of handcuffs as a level of force. Other departments claim that handcuffs are used as a 

restraining tool and do not fit in the typical force ladder. 

This thesis uses force data from the Naval Station Security Department (NSSD) in 

Pearl Harbor, Hawaii, and the Oakland Police Department (OPD) in Oakland, California. 

The military police department used in this study records each reported incident and 

assigns a force level to each report. The civilian police department records monthly force 

totals for lethal force and non-lethal force above level 2 (voice). Although the type of 

data and method of recording force data by the two police departments in this study vary 

greatly, the methods implemented in this study require count data only. This count data is 

typically retrievable from a nominal police department database. Many police 

departments do not record force incidents directly (as was the case for the Naval Station 

Police Department prior to a request made by the author). Any police department that has 

force data will be able to implement the methods developed in this study. Departments 

that do not track force will need to establish a minimal force count database prior to 

implementation.. Fortunately, the self-starting aspect of the CUSUM control chart- 

methods used requires a relatively small data set to get started. Finally, the type of force 

that the department is interested in tracking is independent of the methods used in this 



study. In short, one department may use these methods to track the frequency of all types 

of force according to that particular department's force definitions while another may 

track the frequency of a single specific force level, and a third department may track a 

combination somewhere in between. 

F.      OVERVIEW OF SELF-STARTING CONTROL CHART 
METHODS FOR POISSON DATA 

This section provides the theory necessary to understand a self-starting control 

chart method for Poisson data. This section describes: 

1. Basic control chart methods. 

2. Poisson Shewhart style control chart with A known. 

3. Poisson cumulative sum (CUSUM) control chart with A known. 

4. Self-starting Poisson Shewhart style control chart with A unknown. 

5. Self-starting Poisson CUSUM control chart with A unknown. 

6. Discussion of average run length (ARL). 

7. Discussion of CUSUM optimality properties. 



1.        Basic Control Chart Methods 

Control charts are commonly used to monitor the variability of a process. 

Charting methods exist to monitor processes that generate continuous or discrete data. 

Basic control charts plot data Xt or a function of the data a(Xt) against upper and lower 

control limits. If a data point plots above or below the upper or lower control limits then 

the process is out of statistical control1. The upper and lower control limits are chosen 

such that an out-of-control condition is not signaled as a result of chance for a given 

tolerance. Two basic charts used are the Shewhart style control chart and the cumulative 

sum (CUSUM) control chart. Each chart provides useful information. The information 

provided when these charts are combined is even more useful. 

Shewhart style control charts provide information regarding transient isolated or 

special cause departures that affect the variability in a process. Transient causes affecting 

a process are not uncommon. In a vending machine manufacturing process for example, 

vending machine components are die-cast using molten aluminum. A shipment of 

aluminum contaminated by a foreign material may result in an increase in the number of 

die-cast vending machine components that are too porous for painting. The contaminated 

shipment of aluminum is a transient cause for the production of faulty vending machine 

' A process that is operating with only common causes of variation present is said to be in statistical 
control. A process that is operating in the presence of special causes is said to be out of statistical control 
(Montgomery, 1985). 



components2. The Shewhart chart detects a transient condition when the number of 

components showing excessive porosity in the sample of vending machine components is 

plotted and compared to the upper and lower control limits. 

Shewhart style control charts provide limited effectiveness for detecting persistent 

shifts in a process. Returning to the vending machine example, if the element heating the 

aluminum begins to fail, the temperature of the molten aluminum may be too high or too 

low for effective die-casting. The effect of the faulty heating element can result in the 

slow increase over time of the number of vending machine components that exhibit 

excessive porosity. The Shewhart style control chart is slow to detect these persistent 

causes that affect process variability. Because of the persistent but small nature of the 

shift in the process mean, the Shewhart style control chart may not provide a signal 

indicating an out-of-control condition. An individual trained in detecting trends in data 

plotted over time may identify a trend before the Shewhart chart signals a problem. Since 

the typical user of a control chart system is not trained in data trend analysis, another 

technique is used to assist in detecting persistent shifts in a process. The cumulative sum 

(CUSUM) chart is the preferred chart when detecting persistent shifts in a process. Like 

the Shewhart style control chart, the CUSUM control chart is a plot of data versus time 

and has upper and lower control limits. Additionally, the CUSUM is "tuned" to track data 

from a given distribution and to detect a shift in the mean of a certain size. The CUSUM 

signaling an out-of-control condition implies that the process mean has shifted. Since the 

2 The family business of the author (Oak Manufacturing) produced coin operated gumball machines from 
the early 1950's until mid 1980's. Control chart methods were not used to monitor the die casting process. 



process mean has shifted the chart is re-tuned and restarted to allow tracking of the data 

from the new distribution. 

2.        Poisson Shewhart Style Control Chart with A Known 

A Poisson Shewhart style control chart with A known plots data against control 

limits. Determining the control chart limits is an important step in control chart 

development. Control limits are often defined as a function of the hypothesized 

distribution when the parameter of a process is known. Since the normal distribution is 

familiar and well behaved,- an example using the normal distribution describes the 

concept behind control limit determination. A typical method for generating Shewhart 

chart upper and lower control limits for normal data involves using the mean and standard 

deviation of the distribution. Common limits are equal to the mean plus three standard 

deviations and the mean minus three standard deviations. These limits are called the "3- 

sigma" control limits. Unlike the normal distribution, the Poisson distribution is 

asymmetric (unless the rate A is large). As a result of the asymmetry of the Poisson 

distribution, 3-sigma limits are inadequate for Poisson control chart limits. For Poisson 

data, upper and lower control limits are determined from the probability limits of the 

Poisson distribution with the given rate A. Figure 1 is a Poisson Shewhart style control 

chart for charting data from a Poisson distribution with A — 6. The upper control limit is 

13 and the lower control limit is two. The upper and lower control limits are the values 

corresponding to a criterion level a - .005 for a Poisson distribution with A = 6. The 

result is if a point plots above 13, then the user is 99.5% sure that the plotted value is not 



from a Poisson distribution with rate X = 6. The similar argument is used for a data point 

plotting below the lower control limit of two. Note that since the Poisson distribution is 

discrete, it is not possible to compute the exact values for a criterion level of a = .005. In 

this case, prob(x < 11Ä = 6) = .017 and prob{x > 14 \X = 6) = .004. Figure 1 shows that 

the value plotted in period 25 is above the upper control limit of 13. The chart user is 

now able to investigate the cause of this out-of-control condition. Upper Limit 

Incidents 

Lower Limit 

- Incidents 

- Upper Limit 

- Lower Limit 

Ä 1*1   1   I   I  I   I   I 1   I   I   I  1   1   I I   I   I  1   I   I   I  I   I   I  l-t-t-MH 

Period 

Figure 1. Typical Poisson Shewhart style control chart Data is 
plotted from a Poisson distribution with mean ju=6. The 
upper control limit is 13 and the lower control limit is two. The 
data point in period 25 is above the upper control limit 
indicating a transient or special cause condition (i.e. the data 
point for period 25 is not likely to be from a Poisson 
distribution with rate // = 6)3. 

3 The charts generated in this research use color to differentiate between upper and lower limits, etc. The 
color is lost when these charts are reproduced in black and white. Labels are added to Figure 1 to clarify 
the chart legend. 
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3.        Poisson Cumulative Sum (CUSUM) Control Chart with A Known 

Unlike the Shewhart style control chart, the Poisson CUSUM does not plot raw 

data points. When the parameter A is known, the CUSUM chart plots the cumulative 

sum of the deviations of the sample values X. from a reference value K. Given that K is 

the reference value and X{ is the sample value for the /""observation, the CUSUM 

control   chart   plots   the   value    5,+    and    5,"    against   the   sample   number,    i, 

where S- = max(0, S,_, +Xi-K+)     and S~ = min(0, S,_, +Xi-K~).    The    CUSUM 

control chart signals a persistent departure if the value 5,+ crosses the upper control limit 

or the value S~ crosses the lower control limit. 

The reference value K is a function of the process in-control mean and out-of- 

control limits for the mean.  If ß0 is the in-control mean, ßu is the out-of-control mean 

for an upward shift, and jid is the out-of-control mean for a downward shift, then the 

associated reference values are K+ and K~ respectively.   The equations for calculating 

the reference values for a Poisson CUSUM control chart are  K+ = ———  
ln(//J-ln(//0) 

and K~ = Vd-ßo (Hawkins and Olwell, 1998). 
ln(/^)-ln(//0) 

A typical CUSUM is shown in Figure 2. The process mean is ß0=6. The chart 

is tuned to detect an upward shift in the process mean Hu=l and a downward shift in 
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the process mean fid = 5.   The average run length (ARL) for this chart is 100.   A 

discussion of ARL is provided in part 6 of this section. 

The upper control limit is 14 and the lower control limit is -12. The chart signals 

a persistent shift in the process mean in period 25. The shift is estimated to begin from 

the last point where the trend line (S+ for an increasing trend or 5" for a decreasing 

trend) leaves the zero axis. In Figure 2, the shift in the process mean is estimated to begin 

in period 20. Upper Limit 

Persistent 

30 

20 + 

10 

-20 

*&- 
r£     £ 

-S+ 

-s- 
■ Upper Limit 

- Lower Limit 

Period 

Lower Limit 

Figure 2. Typical CUSUM control chart. Data is plotted from a 
Poisson distribution with in-control mean fi = 6. The out-of- 
control mean for an upward shift is ßu = 7 and the out-of- 

control mean for a downward shift is jud = 5. The upper control 

limit is 14 and the lower control limit is -12. The average run 
length is 100. A persistent shift in the process mean is signaled 
in period 25. The shift is estimated to begin in period 20. (Note: 
the horizontal axis tick-marks can be misleading. The horizontal 
axis begins with '1' and the first axis-tick mark is '2')4. 

4 The charts generated in this research use color to differentiate between S+ (also called the 'increasing 

trend line'), S~ (also called the 'decreasing trend line'), upper and lower limits, etc. The color is lost when 
these charts are reproduced in black and white. Labels are added to Figure 2 to clarify the chart legend. 

12 



4.        Self-Starting Poisson Shewhart Style Control Chart with A Unknown 

A well-defined process with extensive historical data lends itself to the 

implementation of the non-self-starting control charts described previously. In processes 

that are less well-defined, determining the exact process mean is difficult. Additionally, 

some processes undergo frequent shifts resulting in changes to the process mean. The 

result is a condition where extensive historical data necessary to determine the process 

mean is not available and the chart upper and lower control limits are more difficult to 

define. Regarding the force phenomenon studied in this research, police department 

managers could not provide force control limits. This study develops and implements a 

method to provide control limits for the Poisson self-starting Shewhart style control chart 

using probability limits. The result is a scheme that works when charting data that is 

plausibly Poisson. 

Based on the property that the Poisson distribution is infinitely divisible, 

conditioning is used to develop upper and lower control limits for the Poisson self- 

starting Shewhart style control chart.    Given the sum of a series of values X,, the 

n 

probability  P(XH=xH\
y£xi=W) = binomial(W,Vn)   (Hawkins and Olwell,  1998). 

1=1 

Using this relation, probability limits are used to determine the upper and lower control 

limits for the Poisson self-starting Shewhart style control chart. The method developed in 

this study uses the Microsoft Excel critical binomial value function 

CRITBrNOM(n,/7,a) to calculate these control limits. For this function, the first 

argument is W, the second is 1/n where n is the number of periods, and a is the 

13 



confidence level.   For the upper limit a = .995 and for the lower limit a = .005.   For 

4 

example, if the sum of the first four observations is 122, then ^Xf- =122, p=l/4, and 
;=i 

« = .995 for the upper control limit. The value of CRITBINOM(122,.25,.995) is 43. 

Similarly for the lower control limit, the value of CRITBINOM(122,.25,.005) is 19. If the 

fourth observation is greater than or equal to 43 or less than 19, the data point indicates a 

likely transient special cause condition as the chance of a value outside this band given no 

special cause is only (1-2«).   A Poisson self-starting Shewhart style control chart is 

shown in Figure 3. 

Isolated Force Departure 

■+- •+-  1 1— 

Mar 99   Apr 99  May 99   Jun99   Jul99   Aug99 Sep 99 

Period 

H-Incidents 

— Upper Limit 

— Lower Limit 

Figure 3. Typical Poisson self-starting Shewhart style control 
chart. The data points plot within the upper and lower limit 
until Aug 99. The data point for Aug 99 exceeds the upper 
control limit and indicates an isolated upward departure. The 
upper and lower limits of this self-starting Shewhart style 
control chart vary as a function of Poisson probability limits. 
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The data points are monthly readings from a process that is plausibly Poisson. In 

order to provide information for the decision-maker, limits are established that bound 

each data point. These upper and lower control limits (UCL and LCL) help in 

determining if a data point describes an in control or out-of-control condition. If a data 

point plots above the upper control limit or below the lower control limit, that point tells 

the decision-maker that the process may not be operating as intended. There is emphasis 

on "may not" be operating as intended since the point could plot outside the control limits 

purely as the result of chance. The basic idea behind calculating the upper and lower 

control limits involves establishing bounds such that a point plotting outside the limits is 

not likely to be the result of chance at some specific level (discussed previously in this 

section). Notice that the upper and lower control limits change for each period as more 

data is available. Also, note that as n —» °°, np = A. The result is Bin(n,p) —> Pois(A). 

The result of this implementation is an informative plot for the decision-maker indicating 

isolated or transient departures in a process where the signal describing a departure is not 

likely to be caused by chance given that no special cause occurred. In Figure 3 the data 

points from period "Mar 99" to "Jul 99" indicate that the system is in statistical control. 

The data point "Aug 99" exceeds the upper control limit and indicates the occurrence of 

an isolated or special cause departure in the process. 
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5.        Self-Starting Poisson CUSUM Control Chart with X Unknown 

Like the self-starting Shewhart, style control chart, the advantage of the self- 

starting CUSUM is in its ability to begin a control chart program with a much smaller 

data set than that required by non-self-starting methods. Like the non-self-starting 

CUSUM control chart, the Poisson CUSUM does not plot raw data points. When the 

parameter X is unknown the CUSUM chart plots the cumulative sum of the deviations of 

the transformed sample values Y{ from a reference value K. Given that K is the reference 

value and Yt is the transformed value of X, for the i'h observation, the CUSUM control 

chart plots the value 5,+ and S; against the sample number, i, 

whereS,+ = max(0,SM + Yi-K+) andS; = min(0,5,_, + Yi-K~). Like the non-self- 

starting CUSUM, the self-starting CUSUM control chart signals a persistent departure if 

the value 5,+crosses the upper control limit or the value 5," crosses the lower control 

limit. 

Understanding the role of the transformed value of the observation and the 

reference value is critical to understanding the development of self-starting CUSUM 

control charts. The following discussion explains the development of the transformed 

value Yt for a Poisson self-starting CUSUM chart. 

Assume a process follows a Poisson distribution. This process is monitored and 

the value recorded is a count value called Xt.  Additionally, assume that the process in- 

control mean //0 is unknown. The statistic used to estimate ju0 is the sample mean X, 
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(a sample of i in-control readings from the process). Next, let Wt=i Xi. Conditioning 

on W,. yields X,. ~ binomialiW^l/i). In words, X,. are distributed binomial with Wt 

trials and a probability of success for each trial equal to Hi. The distribution of X, does 

not rely on //0, the unknown parameter defining the Poisson distribution. If the process 

mean shifts from //0  to //,, then the conditional distribution of X; is distributed 

binomial with probability equal to — (Hawkins and Olwell, 1998). 
(z-!)//<,+//, 

The probability of success p =  —  for this binomial distribution increases if 
(i-l)fiQ+Mi 

ju: > //0  and decreases if //, < //0.    Monitoring the probability of success for this 

binomial distribution indicates an increasing shift if /I increases and a decreasing shift if 

// decreases. 

The cumulative probability A;. is calculated from the conditional probability of 

X,. where A,. = problbinomialiW^l/i) < X,].  Since the Poisson distribution is discrete, 

the value of A; can only assume a limited number of values as X( e {0,1,2,...,W,}. 

Although the values of A, are limited, they are distributed independently from i to i + \ 

as a result of Basu's lemma (Dawid, 1979). 

The value A, is now transformed to a standard Poisson score.  Since a few data 

points are used to estimate ß0, the unknown mean of the Poisson distribution, let the 

approximation of ß0 be m. Then the transformed value Yi is determined by minimizing 
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the function 
A e-mmj 

y=o     f- 
-A; There is no value that minimizes this function when 

A,. = 1. When A,. = 1, ^ is determined by setting Yl,= X-,. If the estimated mean ju0 of 

the Poisson distribution is exactly equal to the true distribution mean, then the mapping of 

X,. to Yi is exact. Although the estimated mean ß0 is not likely to be exactly equal to 

the true distribution mean, the mapping of X-t to Yt is good as long as the estimated mean 

"is not too far from the true mean. For a self-starting CUSUM, the mean for a Poisson 

distribution can be determined from as little as two or three data points (Hawkins and 

Olwell, 1998). The reference value K is determined as in the non-self-starting CUSUM. 

If ju0 is the estimated in-control mean, //„ is the out-of-control mean for an upward shift, 

and jud is the out-of-control mean for a downward shift, then the associated reference 

values are K+ and K~ respectively.   The equations for calculating the reference values 

are again K+ = ^ILZESL and*- = ^~Mo (Hawkins and Olwell, 1998). 
ln(//J-ln(//0) ln(jud)-ln(ju0) 

As previously stated, the Poisson self-starting CUSUM control chart uses the 

transformed value Yt of the i'h observation X,.. The equations used to calculate 5,+ and 

S,r are easily implemented in a computer-based spreadsheet. Calculating the transformed 

value Yt is slightly more complex. The Poisson self-starting CUSUM control chart 

method written by Hawkins and Olwell uses a Visual Basic macro to calculate Yt 

(Hawkins and Olwell, 1998). 
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A typical Poisson self-starting CUSUM chart is shown in Figure 4. The CUSUM 

in Figure 4 is tuned for a target in-control mean of 22.4 with an average run length of 100. 

The out-of-control mean for an upward shift is 27.1 and the lower out-of-control mean is 

17.7. The upper control limit is 14 and the lower control limit is -13. The chart indicates 

that a shift in the process mean occurs with the "Aug 99" data point. The shift is believed 

to begin in "Jul 99" which is the last time the increasing trend line left the zero axis. 

When the self-starting CUSUM indicates a shift in the process mean, then the process 

mean has likely changed. Since the process mean changed, the data charted up to the 

shift is now known to be irrelevant to the data generated from the process with the new 

mean. This result requires that a self-starting CUSUM be restarted whenever a persistent 

shift in the process mean is signaled. 

19 



-15 

Persistent Force Departure 

Period 

■ Increasing trend 

- Decreasing trend 

- Upper Limit 

- Lower Limit 

Figure 4. Typical Poisson self-starting cumulative sum 
(CUSUM) control chart. The target in-control mean is 22.4. 
The out-of-control mean for an upward shift is 27.1 and the out- 
of-control mean for a downward shift is 17.7. The upper 
control limit is set to 14 and the lower control limit is set to -13. 
The average run length is 100. The process is in statistical 
control until Aug 99. The shift in the process is believed to 
begin in Jul 99, the last time the increasing trend line was on the 
zero axis. 
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6.        Discussion of Average Run Length (ARL) and CUSUM Control Chart 
Limits (# + and H) 

Before a Poisson self-starting CUSUM is implemented, the average run length 

(ARL), upper, and lower control limits are determined. Determining the upper control 

limit #+and the lower control limit H~ for the CUSUM chart is slightly more 

complicated than determining the control limits for the Shewhart style chart. The limits 

are calculated using the reference value K and the average run length. Tables and 

software packages are available to calculate the upper and lower control limits for a 

CUSUM control chart as a function of the reference value and the average run length. 

The software package ANYGETH.exe is used in this research to determine the upper and 

lower control limit (Hawkins and Olwell, 1998). 

Before explaining the method used to determine the upper and lower control limit," 

the theory supporting the calculation of the average run length is explained. The average 

run length is necessary for control chart implementation." If n = number of periods to a 

signal then the expected value of n (in control) is the ARL and the expected value of n 

(out-of-control) is the out-of-control ARL. ANYGETH.exe calculates these values. The 

trade-off by changing ARL for control chart implementation is analogous to the trade-off 

between type I and type II error in hypothesis testing. The ARL is the length of time in 

which one false alarm can be expected if the process remains stable. If the time period 

for data points is monthly, and the ARL is 100, then there will be (on average) one false 

alarm every 100 months (about one false alarm every 8.3 years). The higher the ARL, the 

longer a chart may progress without a false alarm although the speed of detection 
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decreases. A smaller ARL is used if the decision-maker is concerned with rapidly 

identifying an out-of-control condition yet the possible number of false alarms increases. 

A longer ARL is used if the decision-maker is concerned about reacting to false alarms. 

Manufacturing applications typically use ARL's in the thousands. Well defined processes 

with dense data sets coupled with the extreme cost of shutting down a production line due 

to false alarms support the use of high ARL's (Montgomery, 1985). However, processes 

with sparse data sets (like the force incident data used in this research) use ARL's of 100 

(Hawkins and Olwell, 1998). 

If the upper and lower control limits for the CUSUM are known, the average run 

length can be calculated. Three methods are widely used to determine the average run 

length. These methods are (1) solving integral equations, (2) solving discrete Markov 

chain approximation to the integral equation, and (3) using simulation. An explanation of 

the integral equation and discrete Markov chain approximation follows. 

The integral equation for continuous variables is (Hawkins and Olwell, 1998): 

h 

L(z) = 1 + L(0)F(k -z) + \L(x)dF{x+k-z).' 
o 

L(z), with z e [0,h), is the average number of future draws until a signal given S+ = z. 

Notice that the equation is the sum of three distinct parts. The first part is the probability 

that another draw is needed. The probability that the next observation is needed given z is 

on the interval [0,h) is one since another observation is always drawn if z is on this 

interval. The second part is the probability that the next observation returns the CUSUM 

to zero multiplied by the average run length from zero.  The third part is the integral of 

22 



the ARL for the next value on the interval (0,h) times the probability that a next value 

occurs. (Hawkins and Olwell, 1998). 

The discrete Markov chain approximation finds the solution to the equation 

M 

L(z) = 1 + ]jr L(/)/?(- z   where z is one of the M + l  states and Riz  is the transition 

probability from state z to state i (Hawkins and Olwell, 1998). This equation is the 

discrete version of the integral equation. In matrix form this equation is (I-T)A = \ 

where T is the transition probability matrix, >£ is a vector of length M+l of ARL values 

for CUSUMs starting in the corresponding states 0,1,...M and 1 is a vector of l's with 

length M+l. Solving the matrix form results in the determination of ARL (Hawkins and 

Olwell, 1998). The result of the equations used to determine ARL is that given H and K, 

the ARL can be calculated. Similarly, given K and ARL, H can be calculated. It is 

typical for a decision-maker to determine an acceptable false alarm rate and time to 

detection by selecting an appropriate average run length. Since ARL is usually selected 

and the reference value K is calculated from the target in-control mean and out-of-control 

mean, the issue is solving for the upper and lower control limits H+ and H~. 

ANYGETH.exe uses the discrete Markov chain approximation to the integral equations 

for determining H+ and H~ given ARL and K. 

23 



7.        Discussion of CUSUM Optimality Properties 

CUSUM methods possess certain optimality properties. Moustakides (1986), 

Ritov (1990), Gan (1991), and Yashchin (1993) explore the optimality properties of the 

CUSUM. Optimality in this sense refers to detecting when a process has shifted from a 

single known distribution to another known distribution (Hawkins and Olwell, 1998). In 

short, the CUSUM is optimal for detecting the persistent shifts'for which they are tuned 

(Hawkins and Olwell, 1998). Fortunately, CUSUM's are robust resulting in a relatively 

broad area of near-optimal operation (Hawkins and Olwell, 1998). In this research, the 

CUSUM is typically tuned to detect a plus and minus one standard deviation shift in the 

mean. Testing for shifts of other sizes is implemented in this research as necessary. The 

Poisson self-starting CUSUM is not exactly optimal (as are all of the non-self-starting 

versions) unless the estimated mean m = //0 exactly. However, .the self-starting CUSUM 

nearly inherits these optimality properties because of the robustness of the CUSUM, 

resulting in control charts that provide rapid detection when the process mean changes 

(Hawkins and Olwell, 1998). 

There is a large volume of information detailing the development and theory used 

in control chart methods. Further insight can be gained by reading Cumulative Sum 

Charts and Charting for Quality Improvement written by Douglas Hawkins and David 

Olwell. 
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G.     RELATED RESEARCH 

CUSUM methods are commonly applied in industry and to manufacturing 

processes for quality control. CUSUM methods can be applied to non-industry related 

processes (Yashchin, 1993). Research conducted by Emmanuel Yashchin suggests 

applications for CUSUM techniques in Engineering Process Control (EPC). Yashchin 

describes EPC situations where the process mean is in continuous motion. Statistical 

Process Control (SPC) as described by Yashchin is a process where abrupt changes at 

unknown times occur in the process mean. The police force phenomenon is likely to fit an 

engineering process control paradigm. 

CUSUM methods are commonly applied in situations where the exact mean and 

standard deviation of the process are known. Police force results from a process that does 

not have an exact and defined mean and standard deviation. The self-starting CUSUM 

method is valuable in this type of application. Douglas Hawkins shows that self-starting 

CUSUM charts are preferred in situations where the process mean and' standard deviation 

are not known a priori (Hawkins, 1987). 

CUSUM methods are used to monitor crime. David Olwell applies self-starting 

CUSUM methods to the New York City Police Department (Olwell, 1997). Although the 

phenomenon of crime and the phenomenon of police force are different, the application 

of self-starting CUSUM methods is similar. 
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II. METHODOLOGY 

A. RESEARCH APPROACH 

This research involves the analysis of existing force data taken from the Naval 

Station Security Department (NSSD), Pearl Harbor, Hawaii and Oakland Police 

Department (OPD), Oakland, California, databases. From these databases, police force 

count data is extracted. Exploratory data analysis is performed which includes 

determining statistical parameters of the data. Once the necessary parameters are 

determined, the appropriate CUSUM and Shewhart charting algorithms are applied. 

CUSUM tuning parameters (persistent UCL/LCL and ARL) are determined and these 

parameters are entered into the charting software package. The force count data is 

entered into the tuned charting software package and the control charts are generated. 

B. DATABASE 

OPD force data is maintained in a quarterly force summary report. There are two 

quarterly reports (the K-3 and K-4 report) which provide monthly totals of force incidents 

for the previous quarter. The OPD K-3 report summarizes the incidents involving lethal 

force and the OPD K-4 report summarizes non-lethal force. Since monthly force totals 

are the only force data available, these monthly totals are taken directly from the force 

summary report. A summary of the OPD force data is listed in Appendix A. 

Police force data for NSSD is taken directly from the department incident tracking 

system. The volume of police calls for NSSD is relatively low. The low volume allows 

27 



NSSD to record each and every police call that results in an incident report. These 

reports are summarized by NSSD in a Microsoft Excel spreadsheet. NSSD did not track 

force data prior to March of 1999. Since March of 1999, force data is recorded by NSSD 

in the existing spreadsheet. This force data is extracted directly from the spreadsheet and 

totaled as incidents per month and incidents per week. A summary of the NSSD force 

data is listed in Appendix B. 

C.      SOFTWARE 

Four software packages are used in the development of this study. S-Plus and 

Minitab are the statistical packages used for the exploratory data analysis (calculating 

mean, variance, ANOVA tables, etc). A computer based control chart plotter is used to 

chart the police force data. The author of this thesis modified a version of the CUSUM 

software package developed by Hawkins and Olwell. This modified version of the 

CUSUM software package is named 'Force Tracker.' Force Tracker is the computer 

based control chart plotter used to chart the police force data. The charting software is 

spreadsheet based with Visual Basic macros. The spreadsheet is implemented using 

Microsoft Excel. Force data and CUSUM tuning parameters are entered directly into 

Force Tracker. Force Tracker generates the associated control charts. An excerpt from 

Force Tracker's main data entry page and list of changes to the CUSUM package written 

by Hawkins and Olwell is located in Appendix C. This excerpt provides the general 

instructions available to ease the implementation of Force Tracker. This excerpt also 

summarizes the functionality added (by the author) to the charting software initially 

28 



developed by Hawkins and Olwell. Finally, 'ANYGETH.exe' is a Fortran based software 

package developed by Hawkins and Olwell. ANYGETH.exe calculates the upper and 

lower CUSUM control chart limits. ANYGETH.exe requires the proposed distribution of 

the data being charted, the target in-control and out-of-control mean and the average run 

length (ARL). The proposed distribution is selected and ANYGETH.exe produces the 

exact theoretical reference value K. The (K, ARL) pair is entered into ANYGETH.exe 

and the appropriate control limits are calculated. A brief set of instructions for using 

ANYGETH.exe (for Poisson data) is included in Appendix D. Appendix D also includes 

an example of determining the upper control limit for a self-starting Poisson CUSUM 

with a target in-control mean of five, an out-of-control mean for an upward shift of eight, 

and an average run length of 100. ANYGETH.exe calculates the upper control limit of 

nine with an in-control ARL of 99.1. 

Force Tracker is designed to support easy implementation. The user of Force 

Tracker need only input the initial tuning parameters followed by the force count data. 

The tuning parameters are only changed when the system is initially installed and 

following shifts in the process signaled by a control chart. The update graph button 

generates the control charts for the force data entered by the user. Figure 5 shows a 

portion of the Force Tracker input screen. The 'change parameters' button in Figure 5 

opens a window allowing the user to enter the control chart tuning parameters. Figure 6 

shows the 'change parameters' dialog box. 

Force Tracker and ANYGETH.exe are available at a University of Minnesota 

CUSUM web site. The web site is: http://www.stat.umn.edu/~cusum/ . 
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Figure 5. Force Tracker input screen. Column A is the period of report entry 
field. Column B is the force data entry field. The 'Change parameters' button 
displays a window allowing CUSUM tuning parameter manipulation. The 'Run 
Get H' button launches the ANYGETH.exe program directly from the spreadsheet. 
Columns G through J provide values used when executing ANYGETH.exe. Row 4 
indicates that in Sept 98, there are 17 total force incidents. 
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Figure 6. Force Tracker 'change parameters' dialog box. The 
isolated upper and lower limits are the initial Shewhart chart control 
limits. The self-starting algorithm developed in this research 
calculates the remaining Shewhart control limits. The target 
Lambda is the expected distribution mean. Lambda+ and Lambda- 
are the target mean plus and minus the square root of the target 
mean (for this example). The persistent upper and lower limits are 
the values of the decision interval. These values are the calculated by 
ANYGETH.exe. 
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D.      EXPLORATORY DATA ANALYSIS 

The hypothesized parametric distribution for the police force data is the Poisson 

distribution. Data is often believed to be Poisson if the data is count data with few 

responses given many opportunities for a response. The police force data is discrete 

count data with few force incidents given numerous police interactions. Three tests 

evaluate the data to determine the plausibility of modeling using the Poisson Distribution. 

The first test is a "mean equals variance" rule of thumb. This test compares the sample 

mean and the sample variance. The null hypothesis that the data is Poisson may be 

rejected if the sample mean and sample variance is not roughly equal. This rule of thumb 

is applied to both the OPD and NSSD data sets and indicates that the force data is 

plausibly Poisson. 

The second test is the dispersion test. The dispersion test is a formal extension of 

the "mean equals variance" rule of thumb. This test generates a dispersion statistic d, 

which follows a chi-squared distribution if the data is from a Poisson distribution. The 

dispersion statistic is calculated by d = (n - \)s2 IX where s2 is the sample variance, X 

is the sample mean, and n is the number of samples. If the dispersion statistic is larger 

than the appropriate chi-squared critical value, then the data is overdispersed. If the data 

is overdispersed, then the null hypothesis that the data is Poisson may be rejected. The 

dispersion test is recommended as a simple and effective test in this type of application 

(Hawkins and Olwell, 1998). The dispersion test is applied to both the OPD and NSSD 

data sets. 
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The third test is the chi-squared goodness of fit test (chi-squared GOF). This test 

compares the data to a random sample from the hypothesized distribution. The chi- 

squared GOF test has limited application when working with small data sets. If the 

number of data points per bin is less than five, the test may not be accurate. Since the 

NSSD data set is small, the chi-squared GOF test is not used. The OPD data set is tested 

using the chi-squared GOF test to see of the data is plausibly Poisson. The data is divided 

by calendar year to see if each year is plausibly Poisson. Additionally, the data set is 

tested as a whole to see if the entire data set is plausibly Poisson with a single rate. Table 

1 shows the results of the Poisson plausibility tests for the OPD data set. The degrees of 

freedom (df) for the chi-squared value (column six of Table 1) vary as the number of bins 

used in the chi-squared GOF test are selected to allow at least five data points per bin. 

Period Sample Sample Dispersion test Chi Squared Chi Squared Poisson 
Mean Variance Statistic value, 99% 

confidence 
GOF P-value 
(degrees of freedom) 

Plausible? 

1995 25.42 37.36 16.17 24.73 .614 (4 df) YES 
1996 17.17 16.15 10.35 24.73 .989 (3 df) YES 
1997 12.33 14.16 13.03 24.73 .669 (2 df) YES 
1998 14.00 13.09 10.29 24.73 .445 (2 df) YES 
1995 -1998 17.08 42.67 119.92 76.15 .002 (7 df) NO 

Table 1. Summary of dispersion test and chi-squared GOF test for Oakland Police 
Department data. Per year, the data is not over dispersed and the chi-squared GOF 
test does not suggest rejecting the null hypothesis that the data is Poisson. Poisson 
distribution is plausible per year. The period 1995 - 1998 (entire force data set) is 
not plausibly Poisson with a single rate equal to 17.08. This result is not unexpected, 
as the process mean is believed to have changed, causing the overdispersion. It is 
the goal of this research to detect these changes in the process mean. 
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Based on these results, the entire OPD data set (1995-1998) is not plausibly 

Poisson with a rate equal to 17.08. This means the null hypothesis that the data is 

Poisson with a single constant rate is rejected. However, if the data is broken down by 

year, the hypothesis that the data is Poisson is not rejected. This result is not unexpected, 

as the process mean is believed to have changed, causing the overdispersion. It is the 

purpose of this research to identify these changes in the process mean. The three tests 

conclude that the OPD data is plausibly Poisson when evaluated by year. Similarly, the 

NSSD data set is plausibly Poisson when broken down by week. The sample mean for 

the NSSD data set is 4.56 with a variance of 7.03. Since there are 32 weeks in the data 

set, the dispersion statistic is 47.49 and the associated %]\,.oi is 52.19. Since the 

dispersion statistic is less than the chi-squared critical value, the null hypothesis that the 

data is plausibly Poisson is not rejected. 

Periodic or seasonal effects may trigger an out-of-control condition when no such 

condition exists. Periodic or seasonal effects do not prevent the implementation of a 

control chart scheme. However, the implementation is simpler if these effects do not 

exist. The 'seasons' for OPD are broken doWn by hot and cold months. Hot months are 

June through August. Figure 7 shows the results of the one way ANOVA/Tukey's 

Method for OPD by monthly effects and Figure 8 shows the results of the one way 

ANOVA/Tukey's method for OPD by seasonal effects. Analysis of variance (ANOVA) 

shows that it is plausible to conclude that there are no monthly or seasonal effects. 
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One-way Analysis of Variance (MONTH) 

Analysis  of Variance   for   forceByHonth 
Source DF SS HS 
month 11 156. 7 14.2 
Error 36 1953.8 54.3 
Total 47 2110.5 

Level N He an StDev 
Jan 4 20.000 12.780 
Feb 4 18.750 6.994 
Mar 4 18.000 9.416 
Apr 4 20.000 10.677 
Hay 4 16.250 6.898 
Jun 4 18.000 6.164 
Jul 4 15.750 4.646 
Aug 4 16.000 5.477 
Sep 4 17.750 0.957 
Oct 4 16.250 7.042 
Nov 4 13.500 6.137 
Dec 4 16.500 3.317 

Pooled StDev = 7.367 

F 
.26 

P 
0.989 

Individual 95* CIs For Hean 
Based on Pooled StDev 
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Figure 7.   One-way ANOVA by month of Oakland Police Department 
force data. Significant monthly effect does not exist. 

One-way Analysis of Variance (SEASON) 

Analysis of Var iance   for forceByHonth 
Source DF SS HS F                    P 
season 1 . 12.8 12.8 0.28          0.599 
Error 46 2097.7 45.6 
Total 47 2110.5 

Individual  95%   CIs  For Hean 
Based  on  Pooled  StDev 

Level N Hean StDev  + + +   +- 
cold 32 17.594 7.348 (_   — »  ) 
hot 16 16.500 5.317 

14.0               16.0               18.0 

) 

20.0 Pooled StDev = 6.753 

Figure 8.   One-way ANOVA by season of Oakland Police Department 
force data. Significant seasonal effect does not exist. 
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The NSSD data set is too small to conduct a useful one-way ANOVA test. 

Furthermore, seasonal effects are unlikely due to the stable weather conditions in Hawaii. 

The data for NSSD are assumed to be independent without monthly or seasonal effects. 

E.      CUSUM CONTROL CHART PARAMETER 
DETERMINATION 

The self-starting CUSUM implementation in this study requires the determination 

of the following parameters: 

(1) Estimated in-control mean (//0) 

(2) Upper and lower limit for the out-of-control mean (ßh and //,) 

(3) Reference value (K+ and K~) 

(4) Average run length (ARL) 

(5) Persistent shift upper and lower control limits (H+ and H~). 

These parameters are defined and explained in chapter I section F of this study 

(Overview of self-starting control chart methods for Poisson data). Self-starting CUSUM 

control charts allow the use of small data sets when determining the target in-control 

mean. For this study, the first four observations are used to determine the target in- 

control mean. For a CUSUM control chart restart following an out-of-control signal, the 

last four observations are used to determine the new target in-control mean. Ideally, the 

user provides information used to determine the upper and lower limits for the out-of- 

control mean. Again, in a well-defined process, these upper and lower limits for the out- 

of-control mean are relatively easy to determine. In non-manufacturing applications for 

control chart methods, the out-of-control limits are more difficult to define. Neither OPD 
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nor NSSD have established trigger points for 'unusual' shifts in the occurrences of force. 

Process out-of-control limits for this study are calculated by setting the out-of-control 

limit equal to the target mean plus or minus the square root of the target sample mean. 

For example, ßih=juo+ JJi~0 and //, = /i0 - ^[JT0 .   The decision interval (H+to H~)is 

calculated using the reference value (K+and K~) and the average run length. The 

software package ANYGETH.exe calculates the decision interval values. These values 

are entered into Force Tracker. The result for the data sets used in this study is a control 

chart scheme tuned to detect a shift in the process mean of approximately fifteen-percent. 

ANYGETH.exe calculates the in-control and out-of-control ARL's when 

determining the upper and lower CUSUM control limits. In order to show the effect of 

varying ARL on time to detect a shift and false alarm rate, the ARL is varied for the OPD 

data set. The tested values for ARL are 10, 100, and 1000. Table 2 shows the time to 

detection for the OPD data set given the associated ARL. Due to the robustness of the 

CUSUM method, the decrease in sensitivity when detecting a departure is minimal when 

ARL is varied (Hawkins and Olwell, 1998). For the OPD data set, the time to signal an 

out-of-control condition with an ARL of ten is four months. The time to signal an out-of- 

control condition with an ARL of 100 is six months. This result provides useful insight 

into the trade-off between time to detection and false alarm rate. As ARL increases, the 

false alarm rate increases geometrically while the time to detection increases linearly. 
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Average CUSUM CUSUM CUSUM CUSUM Expected Observed 

Run Length upper lower decreasing out of number of number of 

control control trend control months to months to 

limit (UCL) limit (LCL) begins signal 
indicated 

signal trend signal trend 

10 6 -5 April 1995 July 1995 2.6 4 

100 18 -15 April 1995 Sept 1995 4 6 

1000 32 -25 April 1995 Dec 1995 11.2 8 

Table 2. Sensitivity of time to signal an out-of-control condition for Oakland Police 
Department data. The control chart is tuned to detect a shift in the mean equal to 
5.6. Average run length is varied with all other parameters held constant. The time 
to detection varies from 4 month to 8 months. The average number of false alarms 
(as a function of ARL) varies from 1 in 10 months to 1 in 1000 months. As ARL 
increases geometrically, time to signal an out-of-control condition increases linearly. 
The expected number of months to signal an out-of-control condition is calculated 
by ANYGETH.exe. The expected number of months to signal a departure is based 
on the process undergoing a step change in the mean of the magnitude which the 
chart is tuned to detect. Note that the expected and observed number of months to 
signal an out-of-control condition are close. 

The ultimate determination of ARL rests with the decision-maker. The desire to 

detect shifts quickly must be balanced with the ability to handle false alarms. This study 

uses an ARL of 100. 
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III. RESULTS 

A.  OAKLAND POLICE DEPARTMENT FORCE DATA 
CHARTED 

Oakland Police Department data is charted starting with the 1995 data set. When 

a CUSUM departure occurs (the point when the increasing (decreasing) trend line crosses 

the upper (lower) control limit) the process is declared to be out-of-control (Hawkins and 

Olwell, 1998). This out-of-control signal tells the decision-maker that investigation into 

the shift of the process mean is warranted. If the process is declared to be out-of-control, 

the departure is estimated to begin at the last point when the increasing (decreasing) trend 

line left the zero axis if the process undergoes a step shift in the mean (Hawkins and 

Olwell, 1998). Figure 9 shows the first control chart indicating a departure in force rate. 

The CUSUM chart is tuned with a target in-control mean of 32.3, an out-of-control mean 

for an upward shift of 37.9, an out-of-control mean for a downward shift of 26.2, an 

upper control limit of 18, and a lower control limit of -15. The ARL is 100 for an 

upward shift, 98 for a downward shift, and the combined in-control-ARL is 50. 
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Figure 9. Oakland Police Department chart with initial force 
data. Isolated departure did not occur. Decreasing shift in 
force rate signaled in September, 1995 on the persistent force 
departure chart. The decreasing trend is estimated to begin in 
April, 1995. 

The CUSUM signaling an out-of-control condition implies that the process mean 

has shifted. Since the process mean has shifted the chart is re-tuned and restarted to 

allow tracking of the data from the new distribution. The CUSUM is restarted from the 

last point that the chart is believed to be in control. Figure 10 shows the first restart for 

OPD data. This restart again signals a departure in September, 1995. The CUSUM chart 

is tuned with a target in-control mean of 24.8, an out-of-control mean for an upward shift 
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of 29.8, an out-of-control mean for a downward shift of 19.9, an upper control limit of 17, 

and a lower control limit of -13. The ARL is 106 for an upward shift, 109 for a 

downward shift, and the combined ARL is 54. 
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Figure 10. Oakland Police Department charts restarted from 
April, 1995. Decreasing shift in force rate signaled in 
September, 1995. Decreasing trend is estimated to begin in 
April, 1995. Since the departure is again signaled in 
September, 1995 the force rate decrease is estimated to be a 
linear drift and not a step change. 

The fact that the re-tuned chart detected the departure again in September, 1995, 

implies that the shift in the process mean was due to a linear drift and not a single step 

change. Since the chart signals an out-of-control condition due to a linear drift in the 

process mean, the chart is restarted in October, 1995. Figure 11 shows the control chart 
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for OPD data when restarting with the October, 1995 data point. This chart continues in 

control and signals the next departure in August, 1996. The CUSUM chart is tuned with a 

target in-control mean of 22, an out-of-control mean for an upward shift of 26.7, an out- 

of-control mean for a downward shift of 17.3, an upper control limit of 17, and a lower 

control limit of-12.5. The ARL is 98 for an upward shift, 95 for a downward shift, and 

the combined ARL is 48. 
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Figure 11. Oakland Police Department charts restarted from 
October, 1995. Decreasing shift in force rate signaled in 
August, 1996. Decreasing trend in force rate begins in March, 
1996. 
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The out-of-control condition is estimated to begin in March, 1996 and is signaled 

in August, 1996. An OPD chart restart is required. Since the change in the process mean 

is likely to be the result of a linear drift in the process mean, the restart occurs in August, 

1996. Figure 12 is the OPD chart restarted in August, 1996. The CUSUM chart is tuned 

with a target in-control mean of 15.8, an out-of-control mean for an upward shift of 19.8, 

an out-of-control mean for a downward shift of 11.8, an upper control limit of 12, and a 

lower control limit of-12. The ARL is 83 for an upward shift, 78 for a downward shift, 

and the combined ARL is 40. 
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Figure 12. Oakland Police Department charts restarted from 
August, 1996. Decreasing shift in force rate signaled in 
November, 1997. Decrease in force rate begins in September, 
1997. Isolated downward departure signaled in November, 
1997. 

OPD chart is restarted in November, 1997. Figure 13 is the November, 1997 

restart. The chart shows an increase in the process mean beginning in November, 1997 

and signals an out-of-control condition in September, 1998. It is likely that the October 

and November 1997 data points forced the CUSUM shift since the chart shows a 

continual increase from the November, 1997 signal. The CUSUM chart is tuned with a 

target in-control mean of 11.5, an out-of-control mean for an upward shift of 14.9, an out- 

44 



of-control mean for a downward shift of 8.1, an upper control limit of 12, and a lower 

control limit of-11. The ARL is 108 for an upward shift, 91 for a downward shift, and 

the combined ARL is 49. 
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Figure 13. Oakland Police Department charts restarted from 
November, 1997. Increasing shift in force rate signaled in 
September, 1998. Increasing trend begins in November, 1997. 

The final OPD chart restart occurs in September, 1998. The chart shows an in 

control condition from September, 1998 to March, 1999. Figure 14 is the September, 

1998 restart. The CUSUM chart is tuned with a target in-control mean of 15, an out-of- 

control mean for an upward shift of 18.9, an out-of-control mean for a downward shift of 
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11.1, an upper control limit of 12, and a lower control limit of -11. The ARL is 77 for an 

upward shift, 118 for a downward shift, and the combined ARL is 47. 

Isolated Force Departure 

30 

- 20 " L~ " " " g 15 'rrrr: 
"3 io --■ 
6    5-, 

-I- -I- -r- -t- ■+■ 

-Incidents 
-Upper Limit 
-Lower Li mit 

Sep98    Oct98   Nov98   Dec 98    Jan 99   Feb 99   Mar 99 

Period 

Persistent Force Departure 

15 
10 -- 

5 -- 

$e[ L98- -Oct SS -Nov.38 - Dec98- Jan 99 -F-eb-99 - Maij 99 

-10 -k 
-15 

-Increasing trend 

-Decreasing trend 
-Upper Limit 
-Lover Li mit 

Period 

Figure 14. Oakland Police Department charts restarted from 
September 1998 to March 1999. The chart indicates that force 
process is in statistical control. 
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Figure 15 is the entire OPD data set charted over time. This chart also reveals the 

observed changes in the process mean over time. 
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Figure 15. Oakland Police Department data plotted from 
January, 1995 to March, 1999. General decreasing trend 
from January, 1995 is visible. 

The size of the shift in mean that a control chart is tuned to detect affects control 

chart performance. In order to demonstrate the effect of changing the size of the decision 

interval, the OPD data set is plotted again using different values for the out-of-control 

mean. In the first set of charts, the out-of-control mean is the target mean plus and minus 

about 15% of the mean (i.e. attempting to detect a shift in the mean of about 15%). The 

next set of charts is tuned to detect a much larger shift in the process mean. With the 

average run length held constant, the chart is set to detect a mean shift of 50%. Figure 16 

shows OPD data charted from April, 1995, when tuned to detect a larger shift in the 

process mean. The CUSUM chart is tuned with a target in-control mean of 32.3, an out- 

of-control mean for an upward shift of 48.3, an out-of-control mean for a downward shift 
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of 16.3, an upper control limit of 8, and a lower control limit of -A. The ARL is 96 for an 

upward shift, 69 for a downward shift, and the combined ARL is 40. 
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Figure 16. OPD data plotted when attempting to detect a larger 
shift in the mean (shift of 50%). An isolated departure occurs in 
June, 1996. A persistent shift is detected in July, 1996. The shift is 
estimated to begin in June, 1996. This chart takes longer to detect 
the shift than the previous charts that are tuned to detect a smaller 
shift in the mean (shift of -15 %). 
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The chart for OPD is restarted in August, 1996. Figure 17 is the OPD restart. A decrease 

in the process mean is detected in November, 1997. The CUSUM chart is tuned with a 

target in-control mean of 14.5, an out-of-control mean for an upward shift of 21.5, an out- 

of-control mean for a downward shift of 7.5, an upper control limit of 8, and a lower 

control limit of-5. The ARL is 76 for an upward shift, 72 for a downward shift, and the 

combined ARL is 37. 
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Figure 17. OPD data plotted when attempting to detect a larger 
shift in the mean (shift of 50%). A persistent shift is detected in 
November, 1997. The shift is estimated to begin in September, 
1997. This chart takes longer to detect the shift than the previous 
restarted charts that are tuned to detect a smaller shift in the mean 
(shift of-15%). 

OPD chart is restarted in December, 1997. Figure 18 is the next restart. The 

CUSUM chart is tuned with a target in-control mean of 11.5, an out-of-control mean for 

an upward shift of 17.3, an out-of-control mean for a downward shift of 5.8, an upper 
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control limit of 9, and a lower control limit of -5. The ARL is 134 for an upward shift, 

141 for a downward shift, and the combined ARL is 69. 
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Figure 18. OPD data plotted when attempting to detect a larger 
shift in the mean (shift of 50%). Although the chart does not 
signal a departure in the process mean, the increasing trend line 
shows that the force rate between May and November, 1998 is 
higher than the target mean. 
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The control chart tuned to detect the smaller shift in the process mean (shift size 

approximately equal to a 15% shift in the target mean) detected four shifts in the process 

mean. These shifts are: 

(1) Decreasing shift signaled in September, 1995 

(2) Decreasing shift signaled in August, 1996 

(3) Decreasing shift signaled in November, 1997 

(4) Increasing shift signaled in September, 1998. 

The chart tuned to detect the larger shift (shift size approximately equal to a 50% 

shift in the target mean) with all other parameters held constant detected two shifts in the 

process mean. The shifts are : 

(1) Decreasing shift signaled in July, 1996 

(2) Decreasing shift signaled in November, 1997. 

This result shows the effect of changing the shift size that the CUSUM control 

chart is tuned to detect. A trade-off in looking for larger shifts may result in a longer time 

to detect a smaller shift. In this study, the chart tuned to detect the larger shift detected 

the first departure almost one year later than the chart tuned to detect the smaller shift in 

the process mean. One benefit from tuning to detect a larger shift in the process mean is 

that the CUSUM is more robust against model mis-specifications (i.e. if the process is not 

exactly Poisson) (Hawkins and Olwell, 1998). 

The Oakland Police Department, like other police departments, uses a degree of 

lethal force within the scope of operations. For the purpose of this study, lethal force is 

combined with non-lethal force and the combined force rate is charted.  However, each 
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force phenomenon can be charted independently. Since the impact of an out-of-control 

frequency of lethal force is likely to be substantial, it may be desirable to chart lethal 

force in its own category. The ability to chart the parameter of interest is a great benefit 

to these control chart methods. To indicate this benefit, the lethal force data for OPD is 

charted. A dispersion test of the OPD lethal force data set results in a dispersion statistic 

equal to 82.65 and the chi-squared statistic equal to 76.15. OPD lethal force data is 

.slightly overdispersed. However, it is again likely that the data is comprised of Poisson 

distributions with different rates. The OPD lethal force data is charted using a Poisson 

self-starting CUSUM plotter. Since the incidence of lethal force is much smaller than the 

incidence of non-lethal force, a minimum data set to determine the target mean of one 

year is used. The data is charted from January, 1996. Figure 19 shows the chart of OPD 

lethal force data. The CUSUM chart is tuned with a target in-control mean of 1.6, an out- 

of-cohtrol mean for an upward shift of 2.8, an out-of-control mean for a downward shift 

of .3, an upper control limit of 6, and a lower control limit of-1.5. The ARL is 64 for an 

upward shift, 143 for a downward shift, and the combined ARL is 44. 
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Figure 19. OPD lethal force charted from January, 1996. Isolated 
departure occurs in June, 1997. A persistent shift in the force rate 
is not detected. OPD lethal force rate is in statistical control. 

An isolated departure is indicated in June, 1997. The process is in statistical control from 

June, 1997 to the last data point March, 1999. Since the process is in statistical control, 

the police department managers do not need to expend intensive effort in chasing usual 

variability in force. 
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B.      PEARL HARBOR POLICE DEPARTMENT DATA CHARTED 

The NSSD data set is small. The first four months of data determine the tuning 

parameters. The charting shows no isolated or persistent out-of-control conditions. 

Figure 20 shows NSSD data charted. The CUSUM chart is tuned with a target in-control 

mean of 22.4, an out-of-control mean for an upward shift of 27.1, an out-of-control mean 

for a downward shift of 17.7, an upper control limit of 14, and a'lower control limit of- 

13. The ARL is 106 for an upward shift, 99 for a downward shift, and the combined ARL 

is 51. 
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Figure 20. Naval Station Security Department force data charted 
using a monthly sampling interval. August, 1999 is nearly an 
isolated departure. The process is in statistical control. NSSD can 
continue to collect and chart data. 

The reporting period for a control chart scheme can affect the information 

provided to the decision-maker. For effective control charting, the reporting period is 

chosen such that periodic effects are 'smoothed out.' It is undesirable to have a control 

chart signal a departure every two weeks as the result of a pay day phenomenon. 

Additionally, the number of incidents that each data point represents decreases as the 
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number of sample increases.  However, increasing the reporting period can improve the 

sensitivity of detection (with an associated trade-off in false alarm rate). 

The reporting period for the NSSD charts is monthly. However, the data is 

available in a form that supports charting by period as frequently as force incidents per 

shift. The rate is sufficient to support charting by week. Figure 21 shows NSSD data 

charted with a reporting period equal to one week. The CUSUM chart is tuned with a 

target in-control mean of 4.3, an out-of-control mean for an upward shift of 5.4, an out- 

of-control mean for a downward shift of 3.2, an upper control limit of 10, and a lower 

control limit of -8. The ARL is 97 for an upward shift, 98 for a downward shift, and the 

combined ARL is 49. 
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Figure 21. NSSD force data plotted by week. Decreasing trend 
signaled in July week 1. The decreasing trend is estimated to 
begin in May week 2. More frequent sampling results in detection 
of a shift that was undetected in the monthly reporting scheme. 
Trade-off for increased sensitivity of detection is increase in 
possible number of false alarms. 

The process continues in control until a decreasing trend is signaled in the first 

week of July, 1999. The decreasing trend begins in the second week of May, 1999. An 

increasing trend begins in the fourth week of July, 1999. An isolated departure is 

signaled in the fifth reporting week in July, 1999. 
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IV.   CONCLUSIONS, RECOMMENDATIONS, AND 
FURTHER RESEARCH 

A.      CONCLUSIONS 

There is an inherent tendency to react to usual variation when monitoring a 

process. According to Dr. W. Edwards Deming, the managers fail when they do not 

understand variation. Additionally, Dr. Deming stated that "Views not backed by data are 

more likely to include personal opinions, exaggeration and mistaken impressions." 

(Walton, 1986) 

This study develops a methodology that assists law enforcement decision-makers. 

This statistical method is effective in the monitoring of police force frequency. The 

control chart software package developed in this study is called 'Force Tracker.' Force 

Tracker provides rapid detection of an out-of-control force condition. Furthermore, Force 

Tracker minimizes the potential for unwarranted reaction to usual variation. In the cases 

of the Oakland Police Department and the Naval Station Security Department, usual 

variation in force incidents is present. The charts generated by Force Tracker assist the 

decision-maker in resisting the urge to react to this usual variation. Changes in the force 

frequency for both police departments also occur. Force Tracker identified these shifts in 

the process mean assisting decision-makers in deciding if managerial intervention is 

warranted. 

For the Oakland Police Department, persistent shifts in the process mean are 

detected in September, 1995, August, 1996, November 1997, and September, 1998. The 
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last persistent departure (September, 1998) is the only increasing trend. It is possible that 

the effect of the force reducing efforts made in 1995 are diminishing or losing their value. 

This information is valuable to the OPD supervisors so that necessary intervention can 

stop the observed increase in force frequency. Force Tracker output for the OPD data set 

shows that OPD force frequency has decreased from January, 1995 until September, 

1998. A one-way retrospective ANOVA confirms the result that the mean force rate in 

.1995 is higher than the following years. This test further supports Force Tracker's correct 

detection of the decrease in the process mean. Furthermore, the one-way ANOVA does 

not establish that 1998 is significantly different from 1997. Force Tracker, however, 

signals a departure (increasing trend) in November, 1997. This is an added benefit to 

Force Tracker since in the CUSUM method, the order of the observations is preserved. 

An ANOVA does not preserve the order of the data. Figure 22 is the one-way ANOVA 

of OPD data by year. 
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One-way Analysis of Variance (YEAR) 

Analysi s  of Variance   for fore eByMonth 
Source DF ss HS F                     P 
year 3 1217.2 405.7 19.99          0.000 
Error 44 893.3 20.3 
Total 47 2110.5 

Individual  95%   CIs  For Hean 
Based on Pooled StDev 

Level N He an StDev -+ + + +  
1995 12 2S.417 6.112 ( * ) 

1996 12 17.167 4.019 ( * ) 
1997 12 12.333 3.822 ( * ) 
1998 12 14.000 3.618 ( * ) 

3.0               15.0               20.0               25.0 Pooled StDev = 4.506 1( 

Figure 22.   One-way ANOVA by year of Oakland Police Department force 
data. 1995 mean is significantly higher than other years. 

The isolated departure in November, 1997 indicates an unusually good month. 

Persistent shifts in the force rate occur as well. Interestingly enough, OPD was not aware 

that there was such a significant decrease in police force frequency. It is not the purpose 

of control chart methods (nor is it the purpose of this study) to identify the underlying 

cause for a shift in the force frequency. However, the author contacted OPD with the 

output from Force Tracker in an effort to gain insight into the possible causes of the 

decrease in the force frequency. 
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Initially, certain obvious possible causes for the decrease in force frequency are 

ruled out. OPD reports no change in use of force regulations and no changes in use of 

force reporting procedures. Additionally, the decrease in force rate is not believed to be a 

function of the change in crimes or calls dispatched. Table 3 summarizes the annual 

'Category A' calls dispatched by OPD and the associated percent decrease in calls. 

'Category A' calls are those calls that involve potential danger for serious injury to 

persons, prevention of violent crimes, serious public hazards, or felonies in progress with 

possible suspect on scene. Table 3 also summarizes the percent decrease in force 

incidents per year for OPD. 

Year Number of Category Percent c hange in Annual force Percent change in 
A calls Category A calls from incidents annual force incidents 

previous year from previous year 

1995 15,869 N/A 305 N/A 
1996 15,846 -.14% 206 -32.46% 
1997 15,155 -4.36% 148 -28.16% 
1998 15,381 1.49% 168 13.517c 

Table 3. Summary of Oakland Police Department 'category A' calls and annual 
force incidents Percent change shown from the previous year. It is not likely that 
the decrease in force rate is related to the decrease in the number of 'Category A' 
calls dispatched. 
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Further investigation into the potential causes of the decrease in force frequency 

results in the following three possibilities. First, OPD instituted a Community Policing 

Program in 1995. Second, OPD had a new police chief assigned. Third, OPD instituted a 

command chaplain in 1995. The decrease in force rate may be attributed to the 

previously described causes individually, a combination of the three, or to some other 

unknown factor. Determining the cause of the decrease is difficult largely because of the 

lateness of the inquiry. Had Force Tracker been used by OPD in 1995, the possible 

causes for the decrease in force rate could have been investigated in real time. Early 

detection is beneficial to organizations, it allows the reinforcement of successes. This 

rapid detection allows the development of lessons learned and reinforces the institution of 

new practices. 

Force Tracker output for the Naval Station Security Department data set shows 

that NSSD force frequency is in statistical control when charted monthly. The value of 

Force Tracker for NSSD is largely in preventing reaction to variation. August, 1999 has a 

large number of force incidents that appears to be due to variation since the upper control 

limit is not exceeded. When the NSSD data set is charted using weekly reporting periods, 

a decrease in the force rate is detected. The frequency of the reporting period can be 

increased so long as periodic effects do not result in control chart signals which is why 

the data is aggregated by week. Along with the increase in the reporting frequency is an 

associated increase in the possible number of false alarms. The decision-maker sets the 

tone for the trade-off in detection and false alarms. NSSD can implement the use of 

Force Tracker to continue monitoring police force frequency. 
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B. RECOMMENDATIONS 

As society becomes more sensitive to police force incidents, the pressure upon 

law enforcement managers will intensify. In order to pursue quality control of police 

force, police departments should implement Force Tracker to assist in monitoring police 

force frequency. Force Tracker uses software that is readily available and simple to 

implement. The data required to implement the use of Force Tracker is minimal. Force 

Tracker provides information, not data. Decision-makers need this information to aid in 

the allocation of scarce resources (time and money). 

C. FURTHER RESEARCH 

The possibility exists to model force using statistical regression. Force can be- 

modeled as the response variable to certain available predictor variables. However, since 

most police departments do not statistically monitor police force, useful data sets are 

difficult to find. The Oakland Police Department data set is not sufficient in its current 

form to support regression. The Naval Station Security Department data set is of the 

form to support regression analysis. As the interest in monitoring police force increases, 

the data sets available for regression analysis may improve. Additionally, this study 

merely scratches the surface of the possible applications for control chart techniques. 

Multivariate applications for monitoring force may become necessary. 

Statistically tracking police force is in its infancy. This research marks the 

beginning of the application of Statistical Process Control techniques to the phenomenon 

of police force frequency. 
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APPENDIX A. OAKLAND POLICE DEPARTMENT FORCE 
DATA SUMMARY 

Month Lethal force 
incidents 

Non-lethal force 
incidents 

Lethal and non- 
lethal force 
incidents 

January 1995 0 36 36 

February 1995   - 6 21 27 

March 1995 0 30 30 

April 1995 1 35 36 

May 1995 2 23 25 

June 1995 3 23 26 

July 1995 1 19 "20 

August 1995 3 21 24 

September 1995 1 17 18 

October 1995 0 24 24 

November 1995 2 16 18 

December 1995 0 21 21 

January 1996 3 21 24 

February 1996 0 22 22 

March 1996 1 20 21 

April 1996 0 15 15 

May 1996 0 18 18 

June 1996 3 8 11 

July 1996 1 13 14 

August 1996 0 13 13 
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Month Lethal force 
incidents 

Non-lethal force 
incidents 

Lethal and non- 
lethal force 
incidents 

September 1996 3 16 19 

October 1996 1 17 18 

November 1996 0 18 18 

December 1996 0 13 13 

January 1997 0 13 13 

February 1997 0 12 12 

March 1997 2 9 11 

April 1997 1 13 14 

May 1997 0 13 13 

June 1997 4 14 18 

July 1997 0 10 10 

August 1997 1 11 12 

September 1997 1 16 17 

October 1997 0 7 7 

November 1997 0 5 5 

December 1997 1 15 16 

January 1998 0 7 7 

February 1998 1 13 14 

March 1998 1 9 10 

April 1998 0 15 15 

May 1998 0 9 9 

June 1998 0 17 17 

July 1998 1 18 19 

August 1998 1 14 15 
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Month Lethal force 
incidents 

Non-lethal force 
incidents 

Lethal and non- 
lethal force 
incidents 

September 1998 1 16 17 

October 1998 1 15 16 

November 1998 0 13 13 

December 1998 2 14 16 

January 1999 0 15 15 

February 1999 1 15 16 

March 1999 0 13 13 
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APPENDIX B. NAVAL STATION SECURITY 
DEPARTMENT FORCE DATA SUMMARY 

Month Lethal force 
incidents 

Non-lethal force 
incidents 

Lethal and non- 
lethal force 

March 1999 0 19 19 

April 1999 0 26 26 

May 1999 0 15 15 

June 1999 0 21 21 

July 1999 0 16 16 

August 1999 0 31 31 
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Week Lethal force 
incidents 

Non-lethal force 
incidents 

Lethal and non- 
lethal force 
incidents 

1 0 2 2 

2 0 8 8 

3 0 1 1 

4 0 5 5 

5 0 3 3 

6 0 7 7 

7 0 3 3 

8 0 10 10 

9 0 6 6 

10 0 6 6 

11 0 2 2 

12 0 3 3 

13 0 4 4 

14 0 4 4 

15 0 2 2 

16 0 7 7' 

17 0 5 5 

18 0 1 1 

19 0 0 0 

20 0 5 5 

21 0 1 1 

22 0 10 10 

23 0 7 7 

24 0 9 9 

25 0 4 4 

26 0 7 7 
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Week Lethal force 
incidents 

Non-lethal force 
incidents 

Lethal and non- 
lethal force 
incidents 

27 0 4 4 

28 0 4 4 

29 0 6 6 

30 0 2 2 

31 0 5 5 

32 0 3 3 
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APPENDIX C. FORCE TRACKER DIRECTIONS AND SUMMARY 
OF FUNCTIONALITY ADDED TO EXISTING CONTROL CHART 

SCHEME 

FORCE TRACKER DIRECTIONS: 

This is a Self-starting Poisson CUSUM plotter. It plots CUSUMs for upward and 
downward shifts, as well as a Shewhart-style chart for isolated departures. 

A. Enter the monthly force incidents on the spreadsheet. Enter the 3-letter month 
abbreviation starting in cell A4 and the corresponding total force incidents for that month 
starting in cell B4. 

B. To enter the scheme, click the "change parameters" button. It is only necessary to 
change parameters for the initial set up or when the "Persistent" chart goes out-of-control. 
Although the values in column H and J will change with each new data point, it is not 
necessary to change parameters for each new data entry. Fill in the dialog box with the 
following information: 

1. Target lambda in control (lambda is the expected average number of force 
incidents). Unless other historical data is provided, use the number calculated in 
spreadsheet cell HI. 
2. Enter the out-of-control upper and lower tuning values ("lambda+ " and 
"lambda-", respectively). Unless other historical data is provided, use the value in 
cell H2 for lambda+ and use the value in H3 for lambda-. 
4. Enter the isolated upper and lower control limits. Unless other historical data 
is provided, use the value in Jl for upper and use the value in J2 for the lower 
limit. 
5. Enter the value for the persistent upper and lower limit. See handout for 
guidance on calculating these values. 
6. Click the "OKAY" button any time that you need to return to the data sheet. 

C. To see the charts click the "Update graphs" button. 

D. If the chart doesn't appear to work properly, ensure that the persistent lower limit 
(under change parameters) is a negative number. 

E. If any chart goes out-of-control, the word "hot" will appear in the column C. An out- 
of-control "Persistent" chart indicates a shift in the average force incidents and an out-of- 
control isolated chart indicates a point change. The out-of-control chart is reason to 
investigate the potential cause for the change in force frequency. Recall that the shift can 
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be high or low. An upward shift may indicate a lack of officer supervision or an increase 
in the number of police calls. A downward shift may indicate heightened awareness or a 
decrease in the number of police calls. If the "Persistent" chart crosses the decision level 
(high or low out-of-control), new data and parameters must be entered. Continue to part 
F for new data stream entry directions. 

F. Begin the new data stream by using the last in control force value and the most recent 
force value. The last in control value is the number in column B just before the entry that 
caused "hot" to appear. The most recent value is the number in column B with that 
caused "hot" to appear. Enter these two data points in cells B4 and B5 with the 
corresponding months for these values in cells A4 and A5. Delete all remaining data and 
follow part B above to enter the new parameters. 
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HISTORY OF CHANGES BY R.C. WEITZMAN 

1. Add month to calculation sheet for plot X-axis 

2. Make Shewart chart control limits function of data with CRITBINOM function. 

"YUCL" & "YLCL" for first data point entered by user. 

3. Change trigger for "hot" to CRTTBINOM limits. 

4. Change plot colors (limits in red; trends in blue and green). 

5. Add StatHelper portion for lambda in control, lambda+, lambda-, upper and lower. 

6. Change chart titles and axis to create force specific labels. 

7. Add 'run ANYGETH.exe' button to allow execution of ANYGETH.exe directly from 

spreadsheet. 

8. Put min() function for An' so the value  1  is never returned thus preventing 

CRITBINOM failure from returning 'VALUE*'. 
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APPENDIX D. DIRECTIONS FOR USING ANYGETH.EXE 

D   Select the desired distribution from the main menu. For the Poisson 
Distribution, select number 3. 

D   Enter the target in-control and upper out-of-control mean. If using Force 
Tracker, these values are calculated in spreadsheet cells HI and H2. 

D ANYGETH.exe calculates the exact theoretical reference value. Round this 
value Jo the nearest half unit. For example, if the exact theoretical reference 
value is 3.2, use 3.0. If the value is 1.62, use 1.5 and so on. 

D   Enter -999 999 to deny the option to Winsorize. Winsorization is not used in 
this application. For information regarding Winsorization, refer to Cumulative 
Sum Charts and Charting for Quality Improvement by D. Hawkins and D. 
Olwell. 

D   Enter 'z' to select a zero start CUSUM. 

D   Enter the average run length (ARL). An ARL of 100 is recommended. 

D ANYGETH.exe will calculate the upper control limit. This value is entered 
into the Force Tracker 'Change Parameter' window. 

D   To calculate the lower control limit, repeat the steps listed above. Use the 
target in-control mean and lower out-of-control mean. The lower control limit 
calculated by ANYGETH.exe will be a positive number. However, since the 
lower control limit must be non-positive, enter the negative of the number 
calculated. For example, ifANYGETH.exe calculates 13 for the lower 
control limit, enter -13 into the Force Tracker 'Change Parameters' window. 
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The following example shows how ANYGETH.exe is used to determine the 

upper and lower control limits for a CUSUM control chart for a Poisson process with an 

estimated mean equal to 5 and an out-of-control mean for an upward shift of 8. The 

average run length is 100. 

Qsjxj i h:\lhesis\anygeth.exe   
Program to  calculate   cusum  decision   intervals 
Copyright  1997,   D  M  Hawkins  and D  H  Olwell 
ft   run   log will be   written  on  file  ZZRUNLOG.GTH ', 
Which  distribution   do  you  want?   <Give   its  number from this   menu:> 

1 Normal location 
2 Normal variance 
3 Poisson 
4 Binonial 
5 Negative binonial 
6 Inv Gaussian nean 

3 
Enter the in-control and out-of-control means 

5 8 
The exact theoretical reference value is      6.383 
Enter the reference ualue you want to use 
6 
Uhat are the Winsorizing constants? 
<say -999 999 if you don't want to winsorize or don't understand the questions 
_999 999 
Do you want zero-start <say Z> or FIR <say F>? 

Enter fiRL 
100 

!ij h:\.thesisSanygeth.exe PIE3E3 
Negative   bxnonxal 
Inv   Gaussian  mean 

Enter  the   in-control  and out-of-control means 
5  8 
The  exact   theoretical  reference   value   is 6.383 
Enter  the   reference   value  you want   to  use 
6 
Uhat  are   the  Winsorizing constants? 
<say  -999   999   if   you  don't  want   to   winsorize  or  don't  understand the   question; 
-999   999 
Do   you  want   zero-start   <say  Z>  or  FIR  <say F>? 

Enter  fiRL 
100 
h 9.0000  arls 145.9 135.9 
h 7.0000  arls 66.6 61.1 
h 8.0000  arls 99.1 89.2 

k  6.0000 h  8.0080 ftRL 
h  9.0000 ARL 

99.11 
145.86 

il     9.0000, in-control ARL 
Would you like another run? 

99.1, 00C ftRL 5.1, FIR fiRL 
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